APPENDIX B

Table of Contents

APPENDIX B. FIG	URE AND DIAGRAMS	i
Figures fro	m Section 2	AB-1
Figure 2-1	Effects of Urbanization on Flood Hydrograph	AB-1
Figure 2-2	Austin Intensity-Duration-Frequency Curves	AB-2
Figure 2-3	Dimensionless Curvilinear Unit Hydrograph and Equivalent Triangular Hydrograph	AB-3
Figures fro	m Section 3	AB-4
Figure 3-1	Nomograph for Flow in Gutters	AB-4
Figures fro	m Section 4	AB-5
Figure 4-1	Curb Opening Inlet in a Sump (Type S-1)0	AB-5
Figure 4-2	Grate Inlet in a Sump (Type S-2)	AB-6
Figure 4-3	Combination Inlet in a Sump (Type S-3)	AB-7
Figure 4-4	Area Inlet Without Grate (Type S-4)	AB-8
Figure 4-5	Curb Opening, Inlet on Grade (Type G-1)	AB-9
Figure 4-6	Grate, Inlet on Grade (Type G-2)	AB-10
Figure 4-7	Combination Inlet on Grade (Type G-3)	AB-11
Figure 4-8	Inlet Capacity for Type S-1 and S-3	AB-12
Figure 4-9	Inlet Capacity for Type S-2	AB-13
Figure 4-10	Capacity for Inlets on Grade	AB-14
Figure 4-11	Ratio of Intercepted to Total Flow for Inlets on Grade	AB-15
Figures from Section 5		AB-16
Figure 5-1	Uniform Flow for Pipe Culverts	AB-16
Figure 5-2	Critical Depth of Flow for Circular Conduits	AB-17
Figure 5-3	Velocity in Pipe Conduits	AB-18
Figure 5-4	Uniform Flow for Concrete Elliptical Pipe	AB-19
Figure 5-5	Critical Depth for Elliptical Pipe	AB-20
Figure 5-6	Velocity in Elliptical Pipe	AB-21
Figure 5-7	Uniform Flow for Pipe Arch	AB-22
Figure 5-8	Critical Depth of Flow for Pipe-Arch	AB-23
Figure 5-9	Velocity in Pipe-Arch	AB-24
Figure 5-10	Minor Head Losses Due to Turbulence at Structures	AB-25
Figure 5-11	Minor Head Losses Due to Turbulence at Structures	AB-26

Figure 5-12		AB-27
Figure 5-13	Flow for Circular Pipe Flowing Full (n=0.010)	AB-28
Figure 5-14	Flow for Circular Pipe Flowing Full (n=0.011)	AB-29
Figure 5-15	Flow for Circular Pipe Flowing Full (n=0.012)	AB-30
Figure 5-16	Flow for Circular Pipe Flowing Full (n=0.013)	AB-31
Figures from Section 6		
Figure 6-1	Uniform Flow for Trapezoidal Channels	AB-32
Figure 6-2	Sloping and Vertical Channel Drops	AB-33
Figure 6-3	Baffled Apron and Its Design Curve	AB-34
Figure 6-4	Conceptual Design of Alternative Channel	AB-35
Figures from Section 7		
Figure 7-1	Headwall Entrance Type	AB-36
Figure 7-2	Conceptual Design of Debris Fins	AB-37
Figure 7-3	Inlet and Outlet Conditions for Culverts	AB-38
Figure 7-4	Hydraulics of a Culvert Under Outlet Control Condition	AB-39
Figure 7-5	Inlet Control Nomograph, Circular Pipe	AB-40
Figure 7-6	Inlet Control Nomograph, Box Culverts	AB-41
Figure 7-7	Inlet Control Nomograph, CSP Arch	AB-42
Figure 7-8	Inlet Control Nomograph, RCP Arch	AB-43
Figure 7-9	Inlet Control Nomograph, SSP Arch	AB-44
Figure 7-10	Inlet Control Nomograph, RCP Ellipse	AB-45
Figure 7-11	Outlet Control Nomograph, Circular CSP	AB-46
Figure 7-12	Outlet Control Nomograph, Circular RCP	AB-47
Figure 7-13	Outlet Control Nomograph, Box Culverts	AB-48
Figure 7-14	Outlet Control Nomograph, CSP Arch	AB-49
Figure 7-15	Outlet Control Nomograph, RCP Arch	AB-50
Figure 7-16	Outlet Control Nomograph, SPP Arch	AB-51
Figure 7-17	Outlet Control Nomograph, RCP Ellipse	AB-52
Figure 7-18	Critical Depth Curves, Circular Pipe	AB-53
Figure 7-19	Critical Depth Curves, CSP Arch	AB-54
Figure 7-20	Critical Depth Curves, RCP Arch	AB-55
Figure 7-21	Critical Depth Curves, SSP Arch	AB-56
Figure 7-22	Critical Depth Curves, RCP Ellipse	AB-57
Figure 7-23	Types of Flow For Bridge Design	AB-58
Figures from Section 8		AB-59
Figure 8-1	Concept of Detention Pond	AB-59
Figure 8-2	Weir and Orifice Flows	AB-60

Drainage Criteria Manual

APPENDIX B. FIGURE AND DIAGRAMS

Figure 2-1 Effects of Urbanization on Flood Hydrograph

Figure 2-2 Austin Intensity-Duration-Frequency Curves

Figure 2-3 Dimensionless Curvilinear Unit Hydrograph and Equivalent Triangular Hydrograph

Figure 3-1 Nomograph for Flow in Gutters

Figure 4-1 Curb Opening Inlet in a Sump (Type S-1)

- FLOW PATTERN IN A SUMP SECTION B-B SECTION C-C SECTION A-A 361 WATER DEPTH IN THE APPROACH GUTTER a: GUTTER DEPRESSION (5*) Source: City of Austin. <u>Drainage Criteria Manual</u>. Department of Public Works. Austin, Texas. January 1977.

Figure 4-3 Combination Inlet in a Sump (Type S-3)

Figure 4-4 Area Inlet Without Grate (Type S-4) SECTION A-A Source: City of Austin. <u>Drainage Criteria Manual</u>, Department of Public Works. Austin, Texas. January 1977.

Figure 4-6 Grate, Inlet on Grade (Type G-2)

Figure 4-7 Combination Inlet on Grade (Type G-3)

Figure 4-8 Inlet Capacity for Type S-1 and S-3

Figure 4-9 Inlet Capacity for Type S-2

Figure 4-11 Ratio of Intercepted to Total Flow for Inlets on Grade

Figure 5-1 Uniform Flow For Pipe Culverts

Figure 5-2 Critical Depth of Flow For Circular Conduits

Figure 5-3 Velocity in Pipe Conduits

Figure 5-4 Uniform Flow For Concrete Elliptical Pipe

Source: City of Austin, <u>Drainage Criteria Manual</u> Department of Public Works, Austin, Texas, January 1977.

Figure 5-7 Uniform Flow For Pipe Arch

0.06 0.07

Figure 5-10 Minor Head Losses Due to Turbulence at Structures

Source: City of Austin. <u>Orainoge Criteria Manual</u>. Department of Public Works. Austin, Texas. January 1977.

Figure 5-11 Minor Head Losses Due to Turbulence at Structures

Figure 5-12 Sample Stormsewer Layout

Figure 5-13 Flow For Circular Pipe Flowing Full (n=0.010)

.2

SLOPE OF PIPE IN FEET PER 100 FEET

Source: Brater, E.F. and H.W. King, <u>Handbook of Hydraulice</u>, Sixth Edition, McGraw-Hill Book Company, N.Y., 1976

.02 .03.0405

.3 .4 .5.6 .8 1

Figure 5-14 Flow For Circular Pipe Flowing Full (n=0.011)

3 4 5 6 8 10

Figure 5-15 Flow For Circular Pipe Flowing Full (n=0.012)

.2

Source: Brater, E.F. and H.W. King, <u>Handbook</u> of <u>Hydraulios</u>, Stxth Edition, Machawell Book, Company, N.Y., 1975

SLOPE OF PIPE IN FEET PER 100 FEET

.3 .4 .5.6 .8 1

Figure 5-16 Flow For Circular Pipe Flowing Full (n=0.013)

.02 .03.04.05

Figure 6-1 Uniform Flow For Trapezoidal Channels

UPSTREAM CHANNEL APRON DOWNSTREAM DOWNSTREAM CHANNEL CHUTE APRON 7/10 A. SLOPING CHANNEL DROP UPSTREAM UPSTREAM CHANNEL APRON DOWNSTREAM APRON DOWNSTREAM CHANNEL 785 B. VERTICAL CHANNEL DROP Source: U.S. Bureau of Reclamation, "Hydraulic Design of Stilling Basins and Energy Disapators," Engineering Nomograph No. 25, Eighh Printing, Denver, May, 1984.

Figure 6-2 Sloping and Vertical Channel Drops

Figure 6-3 Baffled Apron and Its Design Curve ARTIAL BLOCK WIDTH 4H TO 34H 12" OR LESS-OCATION OPTIONAL SCALE OF FEET-NORMAL TO CHUTE WELOCITY-FT. PER SEC. 15 CRITICAL VELOCITY V = 10 ENTRANCE 5 700 30 40 60 DISCHARGE IN CFS PER FOOT OF WIDTH = q

Source: U.S. Bureau of Reclamation, "Hydraulic Design of Stilling Basins and Energy Disapators," Engineering Nomograph No. 25, Eigth Printing, Denver, May, 1984.

Figure 6-4 Conceptual Design of Alternative Channel

FIGURES FROM SECTION 7

Figure 7-1 Headwall Entrance Type

Source: City of Austin, Watershed Management Division

Figure 7-2 Conceptual Design of Debris Fins

Figure 7-3 Inlet and Outlet Conditions For Culverts

INLET CONTROL IS ONE OF THE TWO MAJOR TYPES OF CULVERT FLOW, CONDITION A WITH AN UNSUBMERGED CULVERT INLET IS PREFERRED TO THE SUBMERGED END. SLOPE, ROUGHNESS AND LENGTH OF CULVERT BARREL ARE NOT A CONSIDERATION.

OUTLET CONTROL INVOLVES THESE FACTORS: CROSS-SECTIONAL AREA OF BARREL, INLET "GEOMETRY", PONDING, SLOPE, ROUGHNESS, TAILWATER, AND LENGTH OF CULVERT BARREL. Source: Boulder County, Storm Drainage Criteria Manual

Figure 7-4 Hydraulics of a Culvert Under Outlet Control Condition

Figure 7-5 Inlet Control Nomograph, Circular Pipe

Figure 7-6 Inlet Control Nomograph, Box Culverts

Figure 7-7 Inlet Control Nomograph, CSP Arch

Figure 7-8 Inlet Control Nomograph, RCP Arch

Figure 7-9 Inlet Control Nomograph, SSP Arch

Figure 7-10 Inlet Control Nomograph, RCP Ellipse

Figure 7-11 Outlet Control Nomograph, Circular CSP

Figure 7-13 Outlet Control Nomograph, Box Culverts

Figure 7-14 Outlet Control Nomograph, CSP Arch

OUTLET CONTROL. Head for structural plate pipe-arch culvert with 18 in corner radius with submerged outlet and flowing full. For 31 in. corner radius, use structure sizes with equivalent greas on the 18-in. corner radius scale.

Length Adjustment for improved Hydraulics

Pipe-Arch Size in Feet	Roughness Factor		Length Adjustment Factor
	Curves based on n	A otual n'	$\left(\frac{n'}{n}\right)^2$
6.1× 4.6	.0327	.0327	LO
8.1× 5.8	.0321	.032	LO
IL4 × 7.2	.0315	.030	0.907
6.6 × 10.1	.0306	.028	0.837

Figure 7-17 Outlet Control Nomograph, RCP Ellipse

Figure 7-20 Critical Depth Curves, RCP Arch

Figure 7-21 Critical Depth Curves, SSP Arch

Figure 7-22 Critical Depth Curves, RCP Ellipse

Figure 7-23 Types of Flow For Bridge Design

FIGURES FROM SECTION 8

Figure 8-1 Concept of Detention Pond

Figure 8-2 Weir and Orifice Flows

